Species differences in the regio- and stereoselectivity of 1-nitronaphthalene metabolism.
نویسندگان
چکیده
1-Nitronaphthalene (1-NN) is a mutagenic nitroaromatic that has been detected in emissions from both heavy- and light-duty diesel engines, as well as in urban airborne particles. 1-NN is a cytochrome P450-bioactivated, nonciliated bronchiolar epithelial (Clara) cell cytotoxicant. Our recent studies demonstrated that 1-NN was metabolized by rat lung and liver microsomal enzymes to six 1-NN GSH conjugates via intermediate C(5),C(6)- and C(7),C(8)-epoxides. These studies examined the metabolism of 1-NN in mouse, and compared the differences in rates of 1-NN GSH conjugate formation between the two species. HPLC radioactivity profiles demonstrated that seven different conjugates were generated in mouse lung and liver microsomal incubations. Six of the seven conjugates corresponded with those observed in incubations with rat microsomes. Mass spectrometry of the new conjugate yielded a m/z 497 (M+H) and identical daughter ions as in the other six conjugates when analyzed by mass spectrometry in electrospray positive ion mode. The major conjugate generated in mouse and rat lung microsomal incubations was conjugate 4 (1-nitro-7-glutathionyl-8-hydroxy-7, 8-dihydronaphthalene). In comparison, the formation of conjugate 6 (1-nitro-5-hydroxy-6-glutathionyl-5,6-dihydronaphthalene) predominated in mouse liver, whereas in rat liver, conjugate 5, a diastereomer of conjugate 6, was generated at the highest rate. We concluded that the rates of formation of regio- and stereoisomeric epoxides from 1-NN differed substantially in target and nontarget tissues, but there was no clear pattern of correlation of tissue susceptibility to the rate or metabolite produced.
منابع مشابه
Bioactivation of the pulmonary toxicants naphthalene and 1-nitronaphthalene by rat CYP2F4.
Naphthalene, a ubiquitous environmental contaminant, produces cytotoxicity in nonciliated bronchiolar epithelial (Clara) cells in mice; rats are refractory to lung cytotoxicity from naphthalene. In contrast, 1-nitronaphthalene is a potent toxicant in both species. Naphthalene is metabolized by CYP2F to a 1,2-epoxide, the first and obligate step in events leading to cytotoxicity. 1-Nitronaphthal...
متن کاملDigging deeper into CYP3A testosterone metabolism: kinetic, regio- and stereoselectivity differences between CYP3A4/5 and CYP3A7
متن کامل
Role of murine cytochrome P-450 2F2 in metabolic activation of naphthalene and metabolism of other xenobiotics.
Despite their substantially lower levels relative to hepatic tissue, pulmonary cytochrome P-450 (CYP) monooxygenases play an important role in the metabolic activation of substrates that cause lung injury. The target- and species-selective toxicity of a number of pulmonary toxicants has been attributed to the presence and distribution of activating enzymes with high kcat in target airways of su...
متن کاملSite-specific metabolism of naphthalene and 1-nitronaphthalene in dissected airways of rhesus macaques.
Studies in rodents have demonstrated the importance of cytochrome P450 monooxygenases in generating reactive metabolites that produce Clara cell injury. Pulmonary P450 activities in rodents are much higher than those in primates, raising the issue of relevance of rodent data to primates. Few studies on P450-catalyzed activation of cytotoxicants in subcompartments of primate lung have been repor...
متن کاملEnantiomeric Composition of the trans-Dihydrodiols Produced from Phenanthrene by Fungi.
The trans-dihydrodiols produced during the metabolism of phenanthrene by Cunninghamella elegans, Syncephalastrum racemosum, and Phanerochaete chrysosporium were purified by high-performance liquid chromatography (HPLC). The enantiomeric compositions and optical purities of the trans-dihydrodiols were determined to compare interspecific differences in the regio- and stereoselectivity of the fung...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2000